Different Functions of the Insect Soluble and Membrane-Bound Trehalase Genes in Chitin Biosynthesis Revealed by RNA Interference
نویسندگان
چکیده
BACKGROUND Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1) and membrane-bound (Tre-2) trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS The membrane-bound trehalase of Spodoptera exigua (SeTre-2) was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1) and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi) of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA) and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB) expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2 has an important role in CHSB expression and chitin synthesis in the midgut.
منابع مشابه
Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathway in Tribolium castaneum
BACKGROUND RNA interference is a very effective approach for studies on gene function and may be an efficient method for controlling pests. Trehalase is a key gene in the chitin biosynthesis pathway in insects. Five trehalase genes have been cloned in Tribolium castaneum, though it is not known whether the detailed functions of these trehalases can be targeted for pest control. RESULTS The fu...
متن کاملFunctional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference
RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate the...
متن کاملIdentification of 20-Hydroxyecdysone Late-Response Genes in the Chitin Biosynthesis Pathway
BACKGROUND 20-hydroxyecdysone (20E) and its receptor complex ecdysone receptor (EcR) and ultraspiracle (USP) play a crucial role in controlling development, metamorphosis, reproduction and diapause. The ligand-receptor complex 20E-EcR/USP directly activates a small set of early-response genes and a much larger set of late-response genes. However, ecdysone-responsive genes have not been previous...
متن کاملStudy on the Effect of Wing Bud Chitin Metabolism and Its Developmental Network Genes in the Brown Planthopper, Nilaparvata lugens, by Knockdown of TRE Gene
The brown planthopper, Nilaparvata lugens is one of the most serious pests of rice, and there is so far no effective way to manage this pest. However, RNA interference not only can be used to study gene function, but also provide potential opportunities for novel pest management. The development of wing plays a key role in insect physiological activities and mainly involves chitin. Hence, the r...
متن کاملInsect trehalase: physiological significance and potential applications.
Trehalose, a non-reducing disaccharide, is widespread throughout the biological world. It is the major blood sugar in insects playing a crucial role as an instant source of energy and in dealing with abiotic stresses. The hydrolysis of trehalose is under the enzymatic control of trehalase. The enzyme trehalase is gaining interest in insect physiology as it regulates energy metabolism and glucos...
متن کامل